AFNI Not Recognizing My +tlrc Datasets – 'NO-DSET' Error

AFNI version info (afni -ver): Precompiled binary macos_10.12_local: Oct 31 2024 (Version AFNI_24.3.06 'Elagabalus')

Hi everyone,

Thanks for taking the time to read my post.

I'm encountering an issue where AFNI isn’t “reading” my datasets during a 3dMVM analysis. My script runs to completion and produces output files, but when I visualize the results, there is no statistically significant signal—everything is zero. Upon checking the error logs, several of my datasets are not being recognized (displaying “NO-DSET” errors).

Here’s what I’ve done so far:

I verified that all file paths are correct and that I have the proper read privileges.
I confirmed that the necessary datasets (paired .BRIK/.HEAD files) exist in their respective session folders.
I converted the datasets to NIfTI and used quotes around the file paths, but AFNI still fails to recognize them.
If anyone has encountered a similar problem or has any insight into why AFNI might be returning “NO-DSET” errors despite valid file paths, I would greatly appreciate your advice.

Thanks in advance for your help!

Notes: I am amare that some sessions are missing (movement) and that the files gained an extra 'sub' on the front!

Data Table:

Subj	Sex	Age	Years_OpioidUse	Years_StimulantUse	Time	InputFile
520	M	34	18	16	ses-00	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-520-CPO-ses-00_seed_corr_z+tlrc
520	M	34	18	16	ses-07	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-520-CPO-ses-07_seed_corr_z+tlrc
520	M	34	18	16	ses-30	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-520-CPO-ses-30_seed_corr_z+tlrc
521	M	45	8	13	ses-07	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-521-CPO-ses-07_seed_corr_z+tlrc
521	M	45	8	13	ses-30	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-521-CPO-ses-30_seed_corr_z+tlrc
522	M	32	7	13	ses-00	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-522-CPO-ses-00_seed_corr_z+tlrc
522	M	32	7	13	ses-30	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-522-CPO-ses-30_seed_corr_z+tlrc
523	M	55	0	40	ses-00	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-523-CPO-ses-00_seed_corr_z+tlrc
524	M	49	29	10	ses-07	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-524-CPO-ses-07_seed_corr_z+tlrc
524	M	49	29	10	ses-30	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-524-CPO-ses-30_seed_corr_z+tlrc
525	F	32	4	8	ses-00	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-525-CPO-ses-00_seed_corr_z+tlrc
525	F	32	4	8	ses-07	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-525-CPO-ses-07_seed_corr_z+tlrc
525	F	32	4	8	ses-30	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-525-CPO-ses-30_seed_corr_z+tlrc
526	F	31	14	10	ses-00	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-526-CPO-ses-00_seed_corr_z+tlrc
526	F	31	14	10	ses-07	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-526-CPO-ses-07_seed_corr_z+tlrc
526	F	31	14	10	ses-30	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-526-CPO-ses-30_seed_corr_z+tlrc
527	M	32	13	12	ses-00	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-527-CPO-ses-00_seed_corr_z+tlrc
527	M	32	13	12	ses-07	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-527-CPO-ses-07_seed_corr_z+tlrc
528	F	24	6	6	ses-07	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-528-CPO-ses-07_seed_corr_z+tlrc
529	F	22	5	0	ses-00	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-529-CPO-ses-00_seed_corr_z+tlrc
529	F	22	5	0	ses-07	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-529-CPO-ses-07_seed_corr_z+tlrc
529	F	22	5	0	ses-30	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-529-CPO-ses-30_seed_corr_z+tlrc
530	M	32	3	11	ses-00	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-530-CPO-ses-00_seed_corr_z+tlrc
530	M	32	3	11	ses-07	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-530-CPO-ses-07_seed_corr_z+tlrc
530	M	32	3	11	ses-30	/Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-530-CPO-ses-30_seed_corr_z+tlrc

3dMVM script:

 3dMVM -prefix GroupxTime_FC \
      -jobs 4 \
      -bsVars "Sex+Age+Years_OpioidUse+Years_StimulantUse" \
      -wsVars "Time" \
      -qVars "Age,Years_OpioidUse,Years_StimulantUse" \
      -dataTable @3dMVM_final.txt
**Error 1**: bekahthurn@HSC-C02TV1J4HTD8:~/Desktop$ ./3dMVM_script.sh 

Checking dataTable file:
3dMVM_final.txt

++Good: Table is regular and rectangular.
Read 182 items

Dimensions: 
rows: 25 | columns: 7

+* Warning: Each "Subj" does not have the same number of "InputFiles"!
Most Subj have 3 InputFiles. The following Subj differ:
 Subj NumInputFiles
 521  2            
 522  2            
 523  1            
 524  2            
 527  2            
 528  1            

Data summary: 
 Variable           Detected_Type Details                                
 Subj               Subjects      Num Subjects=11                        
 Sex                Categorical   Counts: F=10 | M=15                    
 Age                Quantitative  Min=22 | Max=55 | Num outliers=9       
 Years_OpioidUse    Quantitative  Min=0 | Max=29                         
 Years_StimulantUse Quantitative  Min=0 | Max=40 | Num outliers=4        
 Time               Categorical   Counts: ses-00=8 | ses-07=9 | ses-30=8 
 InputFile          Data          Number of InputFiles=25                

++ Good: All InputFiles exist.

++ Good: All InputFiles have exactly 1 volume.

++ Good: All InputFiles are on the same grid.

+* Warning: Log file: ./GroupxTime_FC_log.txt exists! NOT OVERWRITING!! - *this was corrected*

Warning message:
In readLines(file.in) : incomplete final line found on '3dMVM_final.txt'
Loading required package: lme4
Loading required package: Matrix
************
Welcome to afex. For support visit: http://afex.singmann.science/
- Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
- Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
- 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
- Get and set global package options with: afex_options()
- Set sum-to-zero contrasts globally: set_sum_contrasts()
- For example analyses see: browseVignettes("afex")
************

Attaching package: ‘afex’

The following object is masked from ‘package:lme4’:

    lmer

Loading required package: car
Loading required package: carData

++++++++++++++++++++++++++++++++++++++++++++++++++++
***** Summary information of data structure *****
11 subjects :  520 521 522 523 524 525 526 527 528 529 530 
25 response values
2 levels for factor Sex : F M 
25 centered values for numeric variable Age : 0.08 0.08 0.08 11.08 11.08 -1.92 -1.92 21.08 15.08 15.08 -1.92 -1.92 -1.92 -2.92 -2.92 -2.92 -1.92 -1.92 -9.92 -11.92 -11.92 -11.92 -1.92 -1.92 -1.92 
25 centered values for numeric variable Years_OpioidUse : 7.92 7.92 7.92 -2.08 -2.08 -3.08 -3.08 -10.08 18.92 18.92 -6.08 -6.08 -6.08 3.92 3.92 3.92 2.92 2.92 -4.08 -5.08 -5.08 -5.08 -7.08 -7.08 -7.08 
25 centered values for numeric variable Years_StimulantUse : 4.92 4.92 4.92 1.92 1.92 1.92 1.92 28.92 -1.08 -1.08 -3.08 -3.08 -3.08 -1.08 -1.08 -1.08 0.92 0.92 -5.08 -11.08 -11.08 -11.08 -0.08 -0.08 -0.08 
3 levels for factor Time : ses-00 ses-07 ses-30 
0 post hoc tests

Contingency tables of subject distributions among the categorical variables:

   Time
Sex ses-00 ses-07 ses-30
  F      3      4      3
  M      5      5      5

Tabulation of subjects against each of the categorical variables:
~~~~~~~~~~~~~~
lop$nSubj vs Sex:
     
      F M
  520 0 3
  521 0 2
  522 0 2
  523 0 1
  524 0 2
  525 3 0
  526 3 0
  527 0 2
  528 1 0
  529 3 0
  530 0 3

~~~~~~~~~~~~~~
lop$nSubj vs Time:
     
      ses-00 ses-07 ses-30
  520      1      1      1
  521      0      1      1
  522      1      0      1
  523      1      0      0
  524      0      1      1
  525      1      1      1
  526      1      1      1
  527      1      1      0
  528      0      1      0
  529      1      1      1
  530      1      1      1

***** End of data structure information *****
++++++++++++++++++++++++++++++++++++++++++++++++++++

Reading input files now...

Reading input files: Done!


Range of input data: [-0.633, 0.954]

If the program hangs here for more than, for example, half an hour,
kill the process because the model specification or the GLT coding
is likely inappropriate.

[1] "Great, test run passed at voxel (25, 46, 38)!"
[1] "Start to compute 77 slices along Z axis. You can monitor the progress"
[1] "and estimate the total run time as shown below."
[1] "03/02/25 13:57:03.891"
Loading required package: snow
Package snow loaded successfully!

Z slice  1 done:  03/02/25 13:57:10.849 
Z slice  2 done:  03/02/25 13:57:10.902 
Z slice  3 done:  03/02/25 13:57:11.255 
Z slice  4 done:  03/02/25 13:57:12.121 
Z slice  5 done:  03/02/25 13:57:13.676 
Z slice  6 done:  03/02/25 13:57:17.369 
Z slice  7 done:  03/02/25 13:57:27.339 
Z slice  8 done:  03/02/25 13:57:44.712 
Z slice  9 done:  03/02/25 13:58:05.836 
Z slice  10 done:  03/02/25 13:58:26.101 
Z slice  11 done:  03/02/25 13:58:47.055 
Z slice  12 done:  03/02/25 13:59:10.472 
Z slice  13 done:  03/02/25 13:59:35.208 
Z slice  14 done:  03/02/25 14:00:03.675 
Z slice  15 done:  03/02/25 14:00:33.364 
Z slice  16 done:  03/02/25 14:01:07.217 
Z slice  17 done:  03/02/25 14:01:40.928 
Z slice  18 done:  03/02/25 14:02:16.950 
Z slice  19 done:  03/02/25 14:02:52.903 
Z slice  20 done:  03/02/25 14:03:30.541 
Z slice  21 done:  03/02/25 14:04:13.264 
Z slice  22 done:  03/02/25 14:04:55.462 
Z slice  23 done:  03/02/25 14:05:39.062 
Z slice  24 done:  03/02/25 14:06:24.167 
Z slice  25 done:  03/02/25 14:07:10.144 
Z slice  26 done:  03/02/25 14:07:57.672 
Z slice  27 done:  03/02/25 14:08:46.875 
Z slice  28 done:  03/02/25 14:09:35.023 
Z slice  29 done:  03/02/25 14:10:23.702 
Z slice  30 done:  03/02/25 14:11:12.544 
Z slice  31 done:  03/02/25 14:12:00.937 
Z slice  32 done:  03/02/25 14:12:49.357 
Z slice  33 done:  03/02/25 14:13:38.103 
Z slice  34 done:  03/02/25 14:14:26.589 
Z slice  35 done:  03/02/25 14:15:15.167 
Z slice  36 done:  03/02/25 14:16:03.575 
Z slice  37 done:  03/02/25 14:16:51.612 
Z slice  38 done:  03/02/25 14:17:39.352 
Z slice  39 done:  03/02/25 14:18:26.674 
Z slice  40 done:  03/02/25 14:19:13.362 
Z slice  41 done:  03/02/25 14:19:59.934 
Z slice  42 done:  03/02/25 14:20:46.366 
Z slice  43 done:  03/02/25 14:21:32.484 
Z slice  44 done:  03/02/25 14:22:17.819 
Z slice  45 done:  03/02/25 14:23:02.779 
Z slice  46 done:  03/02/25 14:23:47.016 
Z slice  47 done:  03/02/25 14:24:30.937 
Z slice  48 done:  03/02/25 14:25:13.801 
Z slice  49 done:  03/02/25 14:25:55.901 
Z slice  50 done:  03/02/25 14:26:36.471 
Z slice  51 done:  03/02/25 14:27:16.647 
Z slice  52 done:  03/02/25 14:27:55.036 
Z slice  53 done:  03/02/25 14:28:31.656 
Z slice  54 done:  03/02/25 14:29:05.698 
Z slice  55 done:  03/02/25 14:29:37.685 
Z slice  56 done:  03/02/25 14:30:06.660 
Z slice  57 done:  03/02/25 14:30:34.224 
Z slice  58 done:  03/02/25 14:30:58.438 
Z slice  59 done:  03/02/25 14:31:20.534 
Z slice  60 done:  03/02/25 14:31:38.216 
Z slice  61 done:  03/02/25 14:31:53.464 
Z slice  62 done:  03/02/25 14:32:03.889 
Z slice  63 done:  03/02/25 14:32:11.166 
Z slice  64 done:  03/02/25 14:32:13.619 
Z slice  65 done:  03/02/25 14:32:13.668 
Z slice  66 done:  03/02/25 14:32:13.733 
Z slice  67 done:  03/02/25 14:32:13.780 
Z slice  68 done:  03/02/25 14:32:13.834 
Z slice  69 done:  03/02/25 14:32:13.881 
Z slice  70 done:  03/02/25 14:32:13.931 
Z slice  71 done:  03/02/25 14:32:13.979 
Z slice  72 done:  03/02/25 14:32:14.029 
Z slice  73 done:  03/02/25 14:32:14.077 
Z slice  74 done:  03/02/25 14:32:14.128 
Z slice  75 done:  03/02/25 14:32:14.175 
Z slice  76 done:  03/02/25 14:32:14.226 
Z slice  77 done:  03/02/25 14:32:14.284 
*+ WARNING: mri_fdrize: will not process only 0 values (min=20)
++ Smallest FDR q [0 (Intercept) F] = 0
*+ WARNING: mri_fdrize: will not process only 0 values (min=20)
++ Smallest FDR q [1 Sex F] = 0
*+ WARNING: mri_fdrize: will not process only 0 values (min=20)
++ Smallest FDR q [2 Age F] = 0
*+ WARNING: mri_fdrize: will not process only 0 values (min=20)
++ Smallest FDR q [3 Years_OpioidUse F] = 0
*+ WARNING: mri_fdrize: will not process only 0 values (min=20)
++ Smallest FDR q [4 Years_StimulantUse F] = 0
*+ WARNING: mri_fdrize: will not process only 0 values (min=20)
++ Smallest FDR q [5 Time F] = 0
*+ WARNING: mri_fdrize: will not process only 0 values (min=20)
++ Smallest FDR q [6 Sex:Time F] = 0
*+ WARNING: mri_fdrize: will not process only 0 values (min=20)
++ Smallest FDR q [7 Age:Time F] = 0
*+ WARNING: mri_fdrize: will not process only 0 values (min=20)
++ Smallest FDR q [8 Years_OpioidUse:Time F] = 0
*+ WARNING: mri_fdrize: will not process only 0 values (min=20)
++ Smallest FDR q [9 Years_StimulantUse:Time F] = 0

Congratulations! You have got an output GroupxTime_FC+tlrc.

Warning messages:
1: Missing values for 6 ID(s), which were removed before analysis:
521, 522, 523, 524, 527, 528
Below the first few rows (in wide format) of the removed cases with missing data.
    Subj Sex   Age Years_OpioidUse Years_StimulantUse      ses.00      ses.07     ses.30
# 2  521   M 11.08           -2.08               1.92         NaN 0.023209488 0.17367652
# 3  522   M -1.92           -3.08               1.92 -0.03544143         NaN 0.13412245
# 4  523   M 21.08          -10.08              28.92  0.09559521         NaN        NaN
# 5  524   M 15.08           18.92              -1.08         NaN 0.074980572 0.06141484
# 8  527   M -1.92            2.92               0.92  0.14174999 0.005246514        NaN
# 9  528   F -9.92           -4.08              -5.08         NaN 0.026811861        NaN 
2: In summary.Anova.mlm(object$Anova, multivariate = FALSE) :
  one or more error SSP matrix:
corresponding non-sphericity tests and corrections not available
(base) bekahthurn@HSC-C02TV1J4HTD8:~/Desktop$ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~
errorlog: temp
Sun Mar  2 13:42:36 2025

Checking dataTable file:
3dMVM_final.txt

++Good: Table is regular and rectangular.

Dimensions: 
rows: 26 | columns: 7

+* Warning: Each "Subj" does not have the same number of "InputFiles"!
Most Subj have 3 InputFiles. The following Subj differ:
Subj NumInputFiles 
521  2             
522  2             
523  1             
524  2             
528  1             


Data summary: 
Variable           Detected_Type Details                                 
Subj               Subjects      Num Subjects=11                         
Sex                Categorical   Counts: F=10 | M=16                     
Age                Quantitative  Min=22 | Max=55 | Num outliers=9        
Years_OpioidUse    Quantitative  Min=0 | Max=29                          
Years_StimulantUse Quantitative  Min=0 | Max=40 | Num outliers=4         
Time               Categorical   Counts: ses-00=8 | ses-07=9 | ses-30=9  
InputFile          Data          Number of InputFiles=26                 

** ERROR: Datasets not found!!!
[1]  /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-520-CPO-ses-00_seed_corr_z+tlrc+tlrc
[2]  /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-520-CPO-ses-07_seed_corr_z+tlrc+tlrc
[3]  /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-520-CPO-ses-30_seed_corr_z+tlrc+tlrc
[4]  /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-521-CPO-ses-07_seed_corr_z+tlrc+tlrc
[5]  /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-521-CPO-ses-30_seed_corr_z+tlrc+tlrc
[6]  /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-522-CPO-ses-00_seed_corr_z+tlrc+tlrc
[7]  /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-522-CPO-ses-30_seed_corr_z+tlrc+tlrc
[8]  /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-523-CPO-ses-00_seed_corr_z+tlrc+tlrc
[9]  /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-524-CPO-ses-07_seed_corr_z+tlrc+tlrc
[10] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-524-CPO-ses-30_seed_corr_z+tlrc+tlrc
[11] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-525-CPO-ses-00_seed_corr_z+tlrc+tlrc
[12] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-525-CPO-ses-07_seed_corr_z+tlrc+tlrc
[13] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-525-CPO-ses-30_seed_corr_z+tlrc+tlrc
[14] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-526-CPO-ses-00_seed_corr_z+tlrc+tlrc
[15] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-526-CPO-ses-07_seed_corr_z+tlrc+tlrc
[16] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-526-CPO-ses-30_seed_corr_z+tlrc+tlrc
[17] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-527-CPO-ses-00_seed_corr_z+tlrc+tlrc
[18] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-527-CPO-ses-07_seed_corr_z+tlrc+tlrc
[19] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-527-CPO-ses-30_seed_corr_z+tlrc+tlrc
[20] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-528-CPO-ses-07_seed_corr_z+tlrc+tlrc
[21] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-529-CPO-ses-00_seed_corr_z+tlrc+tlrc
[22] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-529-CPO-ses-07_seed_corr_z+tlrc+tlrc
[23] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-529-CPO-ses-30_seed_corr_z+tlrc+tlrc
[24] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-00/sub-sub-530-CPO-ses-00_seed_corr_z+tlrc+tlrc
[25] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-07/sub-sub-530-CPO-ses-07_seed_corr_z+tlrc+tlrc
[26] /Volumes/EHD/CPO_DATA/RS_NAc_1/Ses-30/sub-sub-530-CPO-ses-30_seed_corr_z+tlrc+tlrc

** ERROR: One or more tests failed. See above!!!
(base) bekahthurn@HSC-C02TV1J4HTD8:~/Desktop$ 3dinfo -min -max GroupxTime_FC+tlrc
0|0|0|0|0|0|0|0|0|0	0|0|0|0|0|0|0|0|0|0
base) bekahthurn@HSC-C02TV1J4HTD8:~/Desktop$ 3dinfo -min -max $(awk '{print $NF}' 3dMVM_final.txt | tail -n +2)
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
NO-DSET	NO-DSET
-0.259665	0.605048

3dMVM cannot handle missing data. I recommend using 3dLMEr or 3dGLMM instead.

On a separate note, Years_OpioidUse and Years_StimulantUse are likely mediators of the age effect. If so, including them when examining age effects may be problematic. For more details, you may find this discussion helpful: Covariate Selection.

Gang Chen

Hi,

For the NO-DSET issue, the second output (errorlog: temp) shows the files with an extra +tlrc at the end.
Is that correctly specified in the 3dMVM_final.txt file?
With only 1 +tlrc?

Thanks, Justin