AFNI version info (afni -ver
): Precompiled binary macos_13_ARM_clang: Jan 24 2024 (Version AFNI_24.0.02 'Caracalla')
Hello!
I am running a lme model with 1 categorical fixed variable (Category) and 2 quantitative fixed variables (age, motion) , as well as 2 categorical (Subj, exemplar) and 1 quantitative random variables (age). I would like to use -gltfCode to examine the interaction between specific levels of the 1 categorical fixed variable (e.g., Category: Digit vs. Letter) and age. However, the way I have specified it below seems to ignore the "age" specification and the results area the same as the comparison of "Digit vs. Letter". Is there a way to obtain a categorical x quantitative interaction using -glfCode?
Thanks for the help,
Andrew
3dLMEr -prefix 3dLMEr_output_Longit_Category_censor_exemplars \
-jobs 8 -bounds -2 2 -mask /Volumes/ANDY/NumberProcessing/ref/mask/BN_Atlas_HaskinsPeds_NL_template_2.5_mask+tlrc.HEAD \
-model "category*age+motion+(1+age|Subj)+(1|exemplar)" \
-qVars "age,motion" \
-qVarCenters "5.34,0.1" \
-glfCode DigitvLetterNovel "category : 1*Digit -1*Letter & 1*Digit -1*BACS1" \
-glfCode DotsvLetterNovel "category : 1*Dots -1*Letter & 1*Digit -1*BACS1" \
-glfCode DigitvLetter "category : 1*Digit -1*Letter" \
-glfCode DotsvLetter "category : 1*Dots -1*Letter" \
-glfCode DigitvDots "category : 1*Digit -1*Dots" \
-glfCode DigitvLetterNovelvAge "category : 1*Digit -1*Letter & 1*Digit -1*BACS1 age" \
-glfCode DotsvLetterNovelvAge "category : 1*Dots -1*Letter & 1*Digit -1*BACS1 age" \
-glfCode DigitvLettervAge "category : 1*Digit -1*Letter age" \
-glfCode DotsvLettervAge "category : 1*Dots -1*Letter age" \
-glfCode DigitvDotsvAge "category : 1*Digit -1*Dots age" \
-SS_type 3 \
-dataTable \
Subj category exemplar age motion InputFile \