AFNI version info (afni -ver): 24.3.10
Hi,
I’m running a GLM in AFNI using the -stim_times option with 'GAM' as the response model (Code at the bottom).
From my understanding, 'GAM' is a fixed-shape gamma variate model that does not take explicit durations from the input file - just the onset times. In the GAM model, what “actual” duration is assumed for each event?
Additionally, could you explain the theory behind using a fixed-duration model like 'GAM'? I’m trying to understand the reasoning for treating events without specifying a duration.
For context, it is for a lexical decision task (LDT) experiment with a fast event-related design. On each trial, a word or pseudoword is presented very briefly, and participants press a button immediately after stimulus onset to indicate whether it is a word or a pseudoword. The trials are short, and the interstimulus intervals are jittered.
The below code is my 3dDeconvolve code.
3dDeconvolve \
-input ${dir_preproc}/pb06.${subj}.r0?.scale+tlrc.HEAD \
-censor ${dir_preproc}/motion_${subj}_censor.1D \
-ortvec ${dir_preproc}/motion_demean.1D 'motion_demean' \
-polort A \
-float \
-allzero_OK \
-num_stimts 3 \
-stim_times 1 ${dir_behav}/word_${subj}.1D 'GAM' -stim_label 1 word \
-stim_times 2 ${dir_behav}/nonword_${subj}.1D 'GAM' -stim_label 2 nonword \
-stim_times 3 ${dir_behav}/nogo_${subj}.1D 'GAM' -stim_label 3 nogo \
-gltsym 'SYM: +word +nonword -nogo' -glt_label 1 WordNonword_Nogo \
-gltsym 'SYM: -word -nonword +nogo' -glt_label 2 Nogo_WordNonword \
-gltsym 'SYM: +word -nonword' -glt_label 3 Word_Nonword \
-gltsym 'SYM: +word -nogo' -glt_label 4 Word_Nogo \
-gltsym 'SYM: +nonword -nogo' -glt_label 5 Nonword_Nogo \
-fout -tout \
-x1D X.xmat.${subj}.1D \
-xjpeg S.${subj}.jpg \
-bucket stats.WordNonwordNogo.${subj}
Thank you in advance!