I used 3dLMEr
to test the effects of interest at the population level with the following command:
3dLMEr -prefix LME2_GLM_delay_bycond -jobs 12 \
-mask /data/fmri/freesurfer/subjects/MNI152/SUMA/ribbon_mask2+tlrc \
-model 'load+(1|Subj)' \
-glfCode linear_effect 'load : 1*CI -0.5*SGI1 -0.5*SGI2 & 0.5*SGI1 +0.5*SGI2 -1*SGI3' \
-dataTable @dataTable.txt
The dataTable.txt
file contains the following entries:
Subj load InputFile
s1 CI sub20_glm_LME_delay_cond_CI+tlrc
s1 SGI1 sub20_glm_LME_delay_cond_SGI1+tlrc
s1 SGI2 sub20_glm_LME_delay_cond_SGI2+tlrc
s1 SGI3 sub20_glm_LME_delay_cond_SGI3+tlrc
s2 CI sub21_glm_LME_delay_cond_CI+tlrc
s2 SGI1 sub21_glm_LME_delay_cond_SGI1+tlrc
s2 SGI2 sub21_glm_LME_delay_cond_SGI2+tlrc
s2 SGI3 sub21_glm_LME_delay_cond_SGI3+tlrc
...
The input files are from the outputs from a GLM analysis performed using 3dDeconvolve
with the following parameters:
3dDeconvolve -input pb01.imagery.r??.volreg+tlrc.HEAD \
-censor txt/censor_imagery_combined_2.1D \
-mask /data/fmri/freesurfer/subjects/MNI152/SUMA/ribbon_mask2+tlrc \
-num_stimts 12 \
-stim_times 1 txt/Mixed_sample.txt "BLOCK4(1.6,1)" -stim_label 1 "Sample" \
-stim_times 2 txt/CI_delay_onset.txt "BLOCK4(5.6,1)" -stim_label 2 "DelayCI" \
-stim_times 3 txt/SGI1_delay_onset.txt "BLOCK4(5.6,1)" -stim_label 3 "DelaySGI1" \
-stim_times 4 txt/SGI2_delay_onset.txt "BLOCK4(5.6,1)" -stim_label 4 "DelaySGI2" \
-stim_times 5 txt/SGI3_delay_onset.txt "BLOCK4(5.6,1)" -stim_label 5 "DelaySGI3" \
-stim_times 6 txt/Mixed_probe.txt "BLOCK4(2,1)" -stim_label 6 "Probe" \
-stim_file 7 txt/motion_demean.1D'[0]' -stim_label 7 "Roll" -stim_base 7 \
-stim_file 8 txt/motion_demean.1D'[1]' -stim_label 8 "Pitch" -stim_base 8 \
-stim_file 9 txt/motion_demean.1D'[2]' -stim_label 9 "Yaw" -stim_base 9 \
-stim_file 10 txt/motion_demean.1D'[3]' -stim_label 10 "dS" -stim_base 10 \
-stim_file 11 txt/motion_demean.1D'[4]' -stim_label 11 "dL" -stim_base 11 \
-stim_file 12 txt/motion_demean.1D'[5]' -stim_label 12 "dP" -stim_base 12 \
-tout -nofull_first -polort 3 -bucket tlrc_GLM_bycond/glm_LME_delay_cond -jobs 24
Now, I would like to conduct the same analysis specified by -glfCode
but at the single-subject level in the original space. Should I use -gltSym
while performing 3dDeconvolve
for individual subjects, or would it be better to perform an additional analysis using 3dANOVA
? If so, could you provide guidance on how to approach this for each method?