I am intersted to use 3D deconvolve to obtain voxel-wise response functions for event-related data in mice.
Particularly, for my analysis, I aim to investigate a modelled ‘nuisance’ term that has a unique shape for each individual brain voxel.
Essentially, I would like estimate the response function with and without this term, to evaluate if it would improve estimation of the response function.
I understand that in 3D deconvolve, it is possible to provide nuisance terms (such as motion vectors) in the baseline model.
I however don’t know how to provide such terms in a unique way for each respective voxel.
Regarding alignment, this assumes that DSORT+orig is aligned with the EPI data at the time of running 3dREMLfit. That means DSORT+orig should already be aligned with the EPI volume registration base, and that you are not going to use afni_proc.py to align to the anat (anat to EPI is okay), or to use it to send the EPI to standard space. Again, the DSORT+orig dataset should be in alignment (and on the same grid) is the EPI data input to 3dREMLfit. Since you are working on mouse data, I expect this is a fair assumption.
Thank you so much for your reply. I will give it a try, your descriptions seem clear!
Sincerely,
Michaël
The
National Institute of Mental Health (NIMH) is part of the National Institutes of
Health (NIH), a component of the U.S. Department of Health and Human
Services.