Hello, everyone!
For ROI analysis, I extracted the BOLD signals from the all_runs dataset that created after the preprocessing steps with afni_proc.py.
Now I wonder whether the signals of TRs, that is excluded due to motion censoring, remain the same without any processing (such as, interpolation) in the all_runs dataset.
So what should I do if I want to process (interpolation) the signals of TRs, that is excluded in the GLM analysis, in the all_runs dataset?
My preprocessing script was like:
afni_proc.py -subj_id ${subj} -script proc. -scr_overwrite -blocks tshift \
align tlrc volreg blur mask scale regress -copy_anat \
&datadir/Mean_anat_sub02_TPL.nii \
-dsets \
&datadir/sub02_run1+orig.HEAD \
&datadir/sub02_run2+orig.HEAD \
&datadir/sub02_run3+orig.HEAD \
-tcat_remove_first_trs 0 -align_opts_aea -giant_move -tlrc_base \
MNI152_T1_2009c+tlrc -volreg_align_to MIN_OUTLIER -volreg_align_e2a \
-volreg_tlrc_warp -blur_size 4.0 -regress_stim_times \
&datadir/sub02_1.txt \
&datadir/sub02_2.txt \
&datadir/sub02_3.txt \
&datadir/sub02_4.txt \
-regress_stim_labels ET ST ENT SNT -regress_basis 'BLOCK(8,1)' \
-regress_censor_motion 0.3 -regress_motion_per_run -regress_opts_3dD \
-gltsym 'SYM: ET +ST -ENT -SNT' -glt_label 1 T
-gltsym 'SYM: ET +ENT -ST -SNT' -glt_label 2 S
-regress_compute_fitts \
-regress_make_ideal_sum sum_ideal.1D -regress_est_blur_epits \
-regress_est_blur_errts
Thank you!
Zhiqing