help with preprocessing steps and 3dDeconvolve

Hello. I used afni_proc.py to generate the script below.
I have a few questions:

(1) I wanted to remove the first 6 TRs, and so under the autoblock: tcat, you see ‘[6…179]’ .
Moving a little further down, you see the 3dbucket command:
3dbucket -prefix vr_base pb02.$subj.r01.tshift+orig"[0]"
Question: should the sub-brick index be [0] (as generated by afni_proc) or [6]?

(2) Same question for -epi_base option in the align_epi_anat.py command. Should it be -epi_base 0 or -epi_base 6 ?

(3) In the 3dvolreg command, is this option correct -base vr_base+orig ? Is a sub-brick index required, e.g., -base vr_base+orig[6]? Is there any difference between the two, with and without an index?

(4) Instead of doing the e2a registration align_epi_anat.py first with the option -volreg off and then the realignment 3dvolreg, can I do the 3dvolreg first? How should I change the script if I can do so?

Many thanks,
Duong

================= script ==================================
#!/bin/tcsh -xef

echo “auto-generated by afni_proc.py, Fri May 5 16:10:02 2017”
echo “(version 5.13, March 27, 2017)”
echo “execution started: date

execute via :

tcsh -xef ./proc_subj1.sh |& tee ./output.proc_subj1.sh

=========================== auto block: setup ============================

script setup

take note of the AFNI version

afni -ver

check that the current AFNI version is recent enough

afni_history -check_date 23 Sep 2016
if ( $status ) then
echo “** this script requires newer AFNI binaries (than 23 Sep 2016)”
echo " (consider: @update.afni.binaries -defaults)"
exit
endif

the user may specify a single subject to run with

if ( $#argv > 0 ) then
set subj = $argv[1]
else
set subj = 20170309.pt001_rtfMRI_1Trn3Tst_GD_030917.pt001_rtfMRI_1Trn3Tst_GD_030917
endif

assign output directory name

set output_dir = 20170309.pt001_rtfMRI_1Trn3Tst_GD_030917.pt001_rtfMRI_1Trn3Tst_GD_030917.results

verify that the results directory does not yet exist

if ( -d $output_dir ) then
echo output dir “$subj.results” already exists
exit
endif

set list of runs

set runs = (count -digits 2 1 2)

create results and stimuli directories

mkdir $output_dir
mkdir $output_dir/stimuli

copy stim files into stimulus directory

cp ./stim_times/left.txt ./stim_times/right.txt ./stim_times/up.txt
./stim_times/down.txt $output_dir/stimuli

copy anatomy to results dir

3dcopy
20170309.pt001_rtfMRI_1Trn3Tst_GD_030917.pt001_rtfMRI_1Trn3Tst_GD_030917/anatHeadBrik/anat.r1+orig
$output_dir/anat.r1

============================ auto block: tcat ============================

apply 3dTcat to copy input dsets to results dir, while

removing the first 6 TRs

3dTcat -prefix $output_dir/pb00.$subj.r01.tcat
20170309.pt001_rtfMRI_1Trn3Tst_GD_030917.pt001_rtfMRI_1Trn3Tst_GD_030917/funcHeadBrik/epi.r1+orig’[6…179]’
3dTcat -prefix $output_dir/pb00.$subj.r02.tcat
20170309.pt001_rtfMRI_1Trn3Tst_GD_030917.pt001_rtfMRI_1Trn3Tst_GD_030917/funcHeadBrik/epi.r2+orig’[6…179]’

and make note of repetitions (TRs) per run

set tr_counts = ( 174 174 )

-------------------------------------------------------

enter the results directory (can begin processing data)

cd $output_dir

========================== auto block: outcount ==========================

data check: compute outlier fraction for each volume

touch out.pre_ss_warn.txt
foreach run ( $runs )
3dToutcount -automask -fraction -polort 3 -legendre
pb00.$subj.r$run.tcat+orig > outcount.r$run.1D

# censor outlier TRs per run, ignoring the first 0 TRs
# - censor when more than 0.1 of automask voxels are outliers
# - step() defines which TRs to remove via censoring
1deval -a outcount.r$run.1D -expr "1-step(a-0.1)" > rm.out.cen.r$run.1D

# outliers at TR 0 might suggest pre-steady state TRs
if ( `1deval -a outcount.r$run.1D"{0}" -expr "step(a-0.4)"` ) then
    echo "** TR #0 outliers: possible pre-steady state TRs in run $run" \
        >> out.pre_ss_warn.txt
endif

end

catenate outlier counts into a single time series

cat outcount.r*.1D > outcount_rall.1D

catenate outlier censor files into a single time series

cat rm.out.cen.r*.1D > outcount_${subj}_censor.1D

================================ despike =================================

apply 3dDespike to each run

foreach run ( $runs )
3dDespike -NEW -nomask -prefix pb01.$subj.r$run.despike
pb00.$subj.r$run.tcat+orig
end

================================= tshift =================================

time shift data so all slice timing is the same

foreach run ( $runs )
3dTshift -slice 17 -quintic -prefix pb02.$subj.r$run.tshift
-tpattern alt+z
pb01.$subj.r$run.despike+orig
end

--------------------------------

extract volreg registration base

3dbucket -prefix vr_base pb02.$subj.r01.tshift+orig"[0]"

================================= align ==================================

for e2a: compute anat alignment transformation to EPI registration base

(new anat will be intermediate, stripped, anat.r1_ns+orig)

align_epi_anat.py -anat2epi -anat anat.r1+orig
-save_skullstrip -suffix _al_junk
-epi vr_base+orig -epi_base 0
-epi_strip 3dAutomask
-giant_move
-volreg off -tshift off

================================= volreg =================================

align each dset to base volume, align to anat

register and warp

foreach run ( $runs )
# register each volume to the base
3dvolreg -verbose -zpad 1 -base vr_base+orig
-1Dfile dfile.r$run.1D -prefix rm.epi.volreg.r$run
-cubic
-1Dmatrix_save mat.r$run.vr.aff12.1D
pb02.$subj.r$run.tshift+orig

# create an all-1 dataset to mask the extents of the warp
3dcalc -overwrite -a pb02.$subj.r$run.tshift+orig -expr 1   \
       -prefix rm.epi.all1

# catenate volreg/epi2anat xforms
cat_matvec -ONELINE                                         \
           anat.r1_al_junk_mat.aff12.1D -I                  \
           mat.r$run.vr.aff12.1D > mat.r$run.warp.aff12.1D

# apply catenated xform: volreg/epi2anat
3dAllineate -base anat.r1_ns+orig                           \
            -input pb02.$subj.r$run.tshift+orig             \
            -1Dmatrix_apply mat.r$run.warp.aff12.1D         \
            -mast_dxyz 3                                    \
            -prefix rm.epi.nomask.r$run

# warp the all-1 dataset for extents masking 
3dAllineate -base anat.r1_ns+orig                           \
            -input rm.epi.all1+orig                         \
            -1Dmatrix_apply mat.r$run.warp.aff12.1D         \
            -mast_dxyz 3 -final NN -quiet                   \
            -prefix rm.epi.1.r$run

# make an extents intersection mask of this run
3dTstat -min -prefix rm.epi.min.r$run rm.epi.1.r$run+orig

end

make a single file of registration params

cat dfile.r*.1D > dfile_rall.1D

----------------------------------------

create the extents mask: mask_epi_extents+orig

(this is a mask of voxels that have valid data at every TR)

3dMean -datum short -prefix rm.epi.mean rm.epi.min.r*.HEAD
3dcalc -a rm.epi.mean+orig -expr ‘step(a-0.999)’ -prefix mask_epi_extents

and apply the extents mask to the EPI data

(delete any time series with missing data)

foreach run ( $runs )
3dcalc -a rm.epi.nomask.r$run+orig -b mask_epi_extents+orig
-expr ‘a*b’ -prefix pb03.$subj.r$run.volreg
end

warp the volreg base EPI dataset to make a final version

cat_matvec -ONELINE anat.r1_al_junk_mat.aff12.1D -I > mat.basewarp.aff12.1D

3dAllineate -base anat.r1_ns+orig
-input vr_base+orig
-1Dmatrix_apply mat.basewarp.aff12.1D
-mast_dxyz 3
-prefix final_epi_vr_base

create an anat_final dataset, aligned with stats

3dcopy anat.r1_ns+orig anat_final.$subj

record final registration costs

3dAllineate -base final_epi_vr_base+orig -allcostX
-input anat_final.$subj+orig |& tee out.allcostX.txt

-----------------------------------------

warp anat follower datasets (identity: resample)

================================== tlrc ==================================

warp anatomy to standard space

@auto_tlrc -base TT_icbm452+tlrc -input anat.r1_ns+orig -no_ss
-init_xform AUTO_CENTER

store forward transformation matrix in a text file

cat_matvec anat.r1_ns+tlrc::WARP_DATA -I > warp.anat.Xat.1D

================================== blur ==================================

blur each volume of each run

foreach run ( $runs )
3dmerge -1blur_fwhm 7 -doall -prefix pb04.$subj.r$run.blur
pb03.$subj.r$run.volreg+orig
end

================================== mask ==================================

create ‘full_mask’ dataset (union mask)

foreach run ( $runs )
3dAutomask -dilate 1 -prefix rm.mask_r$run pb04.$subj.r$run.blur+orig
end

create union of inputs, output type is byte

3dmask_tool -inputs rm.mask_r*+orig.HEAD -union -prefix full_mask.$subj

---- create subject anatomy mask, mask_anat.$subj+orig ----

(resampled from aligned anat)

3dresample -master full_mask.$subj+orig -input anat.r1_ns+orig
-prefix rm.resam.anat

convert to binary anat mask; fill gaps and holes

3dmask_tool -dilate_input 5 -5 -fill_holes -input rm.resam.anat+orig
-prefix mask_anat.$subj

compute overlaps between anat and EPI masks

3dABoverlap -no_automask full_mask.$subj+orig mask_anat.$subj+orig
|& tee out.mask_ae_overlap.txt

note Dice coefficient of masks, as well

3ddot -dodice full_mask.$subj+orig mask_anat.$subj+orig
|& tee out.mask_ae_dice.txt

================================= scale ==================================

scale each voxel time series to have a mean of 100

(be sure no negatives creep in)

(subject to a range of [0,200])

foreach run ( $runs )
3dTstat -prefix rm.mean_r$run pb04.$subj.r$run.blur+orig
3dcalc -a pb04.$subj.r$run.blur+orig -b rm.mean_r$run+orig
-c mask_epi_extents+orig
-expr ‘c * min(200, a/b*100)*step(a)*step(b)’
-prefix pb05.$subj.r$run.scale
end

================================ regress =================================

compute de-meaned motion parameters (for use in regression)

1d_tool.py -infile dfile_rall.1D -set_nruns 2
-demean -write motion_demean.1D

compute motion parameter derivatives (just to have)

1d_tool.py -infile dfile_rall.1D -set_nruns 2
-derivative -demean -write motion_deriv.1D

create censor file motion_${subj}_censor.1D, for censoring motion

1d_tool.py -infile dfile_rall.1D -set_nruns 2
-show_censor_count -censor_prev_TR
-censor_motion 0.3 motion_${subj}

combine multiple censor files

1deval -a motion_${subj}censor.1D -b outcount${subj}censor.1D
-expr “a*b” > censor
${subj}_combined_2.1D

note TRs that were not censored

set ktrs = 1d_tool.py -infile censor_${subj}_combined_2.1D \ -show_trs_uncensored encoded

------------------------------

run the regression analysis

3dDeconvolve -input pb05.$subj.r*.scale+orig.HEAD
-censor censor_${subj}_combined_2.1D
-polort 3
-local_times
-num_stimts 10
-stim_times 1 stimuli/left.txt ‘BLOCK(30,1)’
-stim_label 1 L
-stim_times 2 stimuli/right.txt ‘BLOCK(30,1)’
-stim_label 2 R
-stim_times 3 stimuli/up.txt ‘BLOCK(30,1)’
-stim_label 3 U
-stim_times 4 stimuli/down.txt ‘BLOCK(30,1)’
-stim_label 4 D
-stim_file 5 motion_demean.1D’[0]’ -stim_base 5 -stim_label 5 roll
-stim_file 6 motion_demean.1D’[1]’ -stim_base 6 -stim_label 6 pitch
-stim_file 7 motion_demean.1D’[2]’ -stim_base 7 -stim_label 7 yaw
-stim_file 8 motion_demean.1D’[3]’ -stim_base 8 -stim_label 8 dS
-stim_file 9 motion_demean.1D’[4]’ -stim_base 9 -stim_label 9 dL
-stim_file 10 motion_demean.1D’[5]’ -stim_base 10 -stim_label 10 dP
-num_glt 4
-gltsym ‘SYM: +L’
-glt_label 1 L-b
-gltsym ‘SYM: +R’
-glt_label 2 R-b
-gltsym ‘SYM: +L -R’
-glt_label 3 L-R
-gltsym ‘SYM: +U -D’
-glt_label 4 U-D
-jobs 4
-fout -tout -x1D X.xmat.1D -xjpeg X.jpg
-x1D_uncensored X.nocensor.xmat.1D
-fitts fitts.$subj
-errts errts.${subj}
-bucket stats.$subj

if 3dDeconvolve fails, terminate the script

if ( $status != 0 ) then
echo ‘---------------------------------------’
echo ‘** 3dDeconvolve error, failing…’
echo ’ (consider the file 3dDeconvolve.err)’
exit
endif

display any large pairwise correlations from the X-matrix

1d_tool.py -show_cormat_warnings -infile X.xmat.1D |& tee out.cormat_warn.txt

– execute the 3dREMLfit script, written by 3dDeconvolve –

tcsh -x stats.REML_cmd

if 3dREMLfit fails, terminate the script

if ( $status != 0 ) then
echo ‘---------------------------------------’
echo ‘** 3dREMLfit error, failing…’
exit
endif

create an all_runs dataset to match the fitts, errts, etc.

3dTcat -prefix all_runs.$subj pb05.$subj.r*.scale+orig.HEAD

--------------------------------------------------

create a temporal signal to noise ratio dataset

signal: if ‘scale’ block, mean should be 100

noise : compute standard deviation of errts

3dTstat -mean -prefix rm.signal.all all_runs.$subj+orig"[$ktrs]"
3dTstat -stdev -prefix rm.noise.all errts.${subj}_REML+orig"[$ktrs]"
3dcalc -a rm.signal.all+orig
-b rm.noise.all+orig
-c full_mask.$subj+orig
-expr ‘c*a/b’ -prefix TSNR.$subj

---------------------------------------------------

compute and store GCOR (global correlation average)

(sum of squares of global mean of unit errts)

3dTnorm -norm2 -prefix rm.errts.unit errts.${subj}_REML+orig
3dmaskave -quiet -mask full_mask.$subj+orig rm.errts.unit+orig
> gmean.errts.unit.1D
3dTstat -sos -prefix - gmean.errts.unit.1D' > out.gcor.1D
echo “-- GCOR = cat out.gcor.1D

---------------------------------------------------

compute correlation volume

(per voxel: average correlation across masked brain)

(now just dot product with average unit time series)

3dcalc -a rm.errts.unit+orig -b gmean.errts.unit.1D -expr ‘a*b’ -prefix rm.DP
3dTstat -sum -prefix corr_brain rm.DP+orig

create ideal files for fixed response stim types

1dcat X.nocensor.xmat.1D’[8]’ > ideal_L.1D
1dcat X.nocensor.xmat.1D’[9]’ > ideal_R.1D
1dcat X.nocensor.xmat.1D’[10]’ > ideal_U.1D
1dcat X.nocensor.xmat.1D’[11]’ > ideal_D.1D

--------------------------------------------------------

compute sum of non-baseline regressors from the X-matrix

(use 1d_tool.py to get list of regressor colums)

set reg_cols = 1d_tool.py -infile X.nocensor.xmat.1D -show_indices_interest
3dTstat -sum -prefix sum_ideal.1D X.nocensor.xmat.1D"[$reg_cols]"

also, create a stimulus-only X-matrix, for easy review

1dcat X.nocensor.xmat.1D"[$reg_cols]" > X.stim.xmat.1D

============================ blur estimation =============================

compute blur estimates

touch blur_est.$subj.1D # start with empty file

create directory for ACF curve files

mkdir files_ACF

– estimate blur for each run in epits –

touch blur.epits.1D

restrict to uncensored TRs, per run

foreach run ( $runs )
set trs = 1d_tool.py -infile X.xmat.1D -show_trs_uncensored encoded \ -show_trs_run $run
if ( $trs == “” ) continue
3dFWHMx -detrend -mask full_mask.$subj+orig
-ACF files_ACF/out.3dFWHMx.ACF.epits.r$run.1D
all_runs.$subj+orig"[$trs]" >> blur.epits.1D
end

compute average FWHM blur (from every other row) and append

set blurs = ( 3dTstat -mean -prefix - blur.epits.1D'{0..$(2)}'\' )
echo average epits FWHM blurs: $blurs
echo “$blurs # epits FWHM blur estimates” >> blur_est.$subj.1D

compute average ACF blur (from every other row) and append

set blurs = ( 3dTstat -mean -prefix - blur.epits.1D'{1..$(2)}'\' )
echo average epits ACF blurs: $blurs
echo “$blurs # epits ACF blur estimates” >> blur_est.$subj.1D

– estimate blur for each run in errts –

touch blur.errts.1D

restrict to uncensored TRs, per run

foreach run ( $runs )
set trs = 1d_tool.py -infile X.xmat.1D -show_trs_uncensored encoded \ -show_trs_run $run
if ( $trs == “” ) continue
3dFWHMx -detrend -mask full_mask.$subj+orig
-ACF files_ACF/out.3dFWHMx.ACF.errts.r$run.1D
errts.${subj}+orig"[$trs]" >> blur.errts.1D
end

compute average FWHM blur (from every other row) and append

set blurs = ( 3dTstat -mean -prefix - blur.errts.1D'{0..$(2)}'\' )
echo average errts FWHM blurs: $blurs
echo “$blurs # errts FWHM blur estimates” >> blur_est.$subj.1D

compute average ACF blur (from every other row) and append

set blurs = ( 3dTstat -mean -prefix - blur.errts.1D'{1..$(2)}'\' )
echo average errts ACF blurs: $blurs
echo “$blurs # errts ACF blur estimates” >> blur_est.$subj.1D

– estimate blur for each run in err_reml –

touch blur.err_reml.1D

restrict to uncensored TRs, per run

foreach run ( $runs )
set trs = 1d_tool.py -infile X.xmat.1D -show_trs_uncensored encoded \ -show_trs_run $run
if ( $trs == “” ) continue
3dFWHMx -detrend -mask full_mask.$subj+orig
-ACF files_ACF/out.3dFWHMx.ACF.err_reml.r$run.1D
errts.${subj}_REML+orig"[$trs]" >> blur.err_reml.1D
end

compute average FWHM blur (from every other row) and append

set blurs = ( 3dTstat -mean -prefix - blur.err_reml.1D'{0..$(2)}'\' )
echo average err_reml FWHM blurs: $blurs
echo “$blurs # err_reml FWHM blur estimates” >> blur_est.$subj.1D

compute average ACF blur (from every other row) and append

set blurs = ( 3dTstat -mean -prefix - blur.err_reml.1D'{1..$(2)}'\' )
echo average err_reml ACF blurs: $blurs
echo “$blurs # err_reml ACF blur estimates” >> blur_est.$subj.1D

add 3dClustSim results as attributes to any stats dset

mkdir files_ClustSim

run Monte Carlo simulations using method ‘ACF’

set params = ( grep ACF blur_est.$subj.1D | tail -n 1 )
3dClustSim -both -mask full_mask.$subj+orig -acf $params[1-3]
-cmd 3dClustSim.ACF.cmd -prefix files_ClustSim/ClustSim.ACF

run 3drefit to attach 3dClustSim results to stats

set cmd = ( cat 3dClustSim.ACF.cmd )
$cmd stats.$subj+orig stats.${subj}_REML+orig

================== auto block: generate review scripts ===================

generate a review script for the unprocessed EPI data

gen_epi_review.py -script @epi_review.$subj
-dsets pb00.$subj.r*.tcat+orig.HEAD

generate scripts to review single subject results

(try with defaults, but do not allow bad exit status)

gen_ss_review_scripts.py -mot_limit 0.3 -out_limit 0.1 -exit0

========================== auto block: finalize ==========================

remove temporary files

\rm -f rm.*

if the basic subject review script is here, run it

(want this to be the last text output)

if ( -e @ss_review_basic ) ./@ss_review_basic |& tee out.ss_review.$subj.txt

return to parent directory

cd …

echo “execution finished: date

==========================================================================

script generated by the command:

afni_proc.py -subj_id \

20170309.pt001_rtfMRI_1Trn3Tst_GD_030917.pt001_rtfMRI_1Trn3Tst_GD_030917 \

-script ./proc_subj1.sh -out_dir \

20170309.pt001_rtfMRI_1Trn3Tst_GD_030917.pt001_rtfMRI_1Trn3Tst_GD_030917.results \

-dsets \

./20170309.pt001_rtfMRI_1Trn3Tst_GD_030917.pt001_rtfMRI_1Trn3Tst_GD_030917/funcHeadBrik/epi.r1+orig.HEAD \

./20170309.pt001_rtfMRI_1Trn3Tst_GD_030917.pt001_rtfMRI_1Trn3Tst_GD_030917/funcHeadBrik/epi.r2+orig.HEAD \

-blocks despike tshift align volreg tlrc blur mask scale regress \

-anat_has_skull yes -tlrc_base TT_icbm452+tlrc -tcat_remove_first_trs 6 \

-tcat_remove_last_trs 4 -tshift_opts_ts -tpattern alt+z \

-tshift_align_to -slice 17 -copy_anat \

./20170309.pt001_rtfMRI_1Trn3Tst_GD_030917.pt001_rtfMRI_1Trn3Tst_GD_030917/anatHeadBrik/anat.r1+orig \

-align_opts_aea -giant_move -volreg_align_to first -volreg_align_e2a \

-tlrc_opts_at -init_xform AUTO_CENTER -blur_size 7 -regress_stim_times \

./stim_times/left.txt ./stim_times/right.txt ./stim_times/up.txt \

./stim_times/down.txt -regress_stim_labels L R U D -regress_local_times \

-regress_reml_exec -regress_est_blur_epits -regress_est_blur_errts \

-regress_basis_multi ‘BLOCK(30,1)’ ‘BLOCK(30,1)’ ‘BLOCK(30,1)’ \

‘BLOCK(30,1)’ -regress_censor_outliers 0.1 -regress_censor_motion 0.3 \

-regress_opts_3dD -num_glt 4 -gltsym ‘SYM: +L -0’ -glt_label 1 L-b \

-gltsym ‘SYM: +R -0’ -glt_label 2 R-b -gltsym ‘SYM: +L -R’ -glt_label 3 \

L-R -gltsym ‘SYM: +U -D’ -glt_label 3 U-D -jobs 4 -execute

Hi Duong,

1,2) Those first 6 time points never even made it to the
results directory because of that initial 3dTcat command.
So after those 3dTcat commands, it is no longer necessary
to remove any time points, they do not exist anymore.

  1. The single volume dataset called vr_base was extracted
    at the end of the tshift block. Since it has only one
    volume, no selection index is required.

  2. Understand the script better before you think to change
    anything. The effect of the script is indeed that volreg
    happends first, as those transformations are concatenated
    and then applied to the EPI data.

  • rick

Thank you, Rick.

Duong