Hi experts,
I am running 3dDeconvolve on data from a task with 6 conditions. Data was collected with a block design that consisted of 5 runs, with 1 block of each condition per run. Each run is 160s long, so total scanning time is 800s. When taking a look at the design matrix files (X.xmat.1D, X.nocensor.xmat.1D, X.jpg) generated by 3dDeconvolve, I noticed that blocks from run 1 are not being modeled (see attached files, first block should occur at 4s). The time axis in X.nocensor.xmat.1D matches what I would expect (800s), but there are only 4 events modeled for each condition when there should be 5. The timing of the events matches what I would expect for blocks in runs 2-5. This is happening for all subjects. Please let me know if you have any suggestions. Below is my 3ddeconvolve code and an example stim_times file
3dDeconvolve -input parDir/func/*foodcue*{temp}blur6-scale.nii
-censor parDir/func/{subID}foodcue-allruns_censor${TRcen}.tsv
-mask parDir/func/foodcue_full_mask*{temp}.nii
-polort 2
-num_stimts 21
-stim_times 1 onsetDir/{subID}_HighLarge*.txt ‘BLOCK(18,1)’
-stim_label 1 HighLarge
-stim_times 2 onsetDir/{subID}_HighSmall*.txt ‘BLOCK(18,1)’
-stim_label 2 HighSmall
-stim_times 3 onsetDir/{subID}_LowLarge*.txt ‘BLOCK(18,1)’
-stim_label 3 LowLarge
-stim_times 4 onsetDir/{subID}_LowSmall*.txt ‘BLOCK(18,1)’
-stim_label 4 LowSmall
-stim_times 5 onsetDir/{subID}_OfficeLarge*.txt ‘BLOCK(18,1)’
-stim_label 5 OfficeLarge
-stim_times 6 onsetDir/{subID}_OfficeSmall*.txt ‘BLOCK(18,1)’
-stim_label 6 OfficeSmall
-stim_file 7 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[0]’ -stim_base 7 -stim_label 7 trans_x_01
-stim_file 8 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[1]’ -stim_base 8 -stim_label 8 trans_y_01
-stim_file 9 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[2]’ -stim_base 9 -stim_label 9 trans_z_01
-stim_file 10 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[3]’ -stim_base 10 -stim_label 10 rot_x_01
-stim_file 11 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[4]’ -stim_base 11 -stim_label 11 rot_y_01
-stim_file 12 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[5]’ -stim_base 12 -stim_label 12 rot_z_01
-stim_file 13 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[6]’ -stim_base 13 -stim_label 13 csf
-stim_file 14 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[7]’ -stim_base 14 -stim_label 14 white_matter
-stim_file 15 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[8]’ -stim_base 15 -stim_label 15 glob_signal
-stim_file 16 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[9]’ -stim_base 16 -stim_label 16 trans_x_02
-stim_file 17 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[10]’ -stim_base 17 -stim_label 17 trans_y_02
-stim_file 18 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[11]’ -stim_base 18 -stim_label 18 trans_z_02
-stim_file 19 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[12]’ -stim_base 19 -stim_label 19 rot_x_02
-stim_file 20 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[13]’ -stim_base 20 -stim_label 20 rot_y_02
-stim_file 21 parDir/func/{subID}_foodcue-allruns_confounds-header.tsv’[14]’ -stim_base 21 -stim_label 21 rot_z_02
-gltsym ‘SYM: HighLarge -HighSmall’ -glt_label 1 HighLarge-Small
-gltsym ‘SYM: LowLarge -LowSmall’ -glt_label 2 LowLarge-Small
-gltsym ‘SYM: HighLarge -LowLarge’ -glt_label 3 LargeHigh-Low
-gltsym ‘SYM: HighSmall -LowSmall’ -glt_label 4 SmallHigh-Low
-gltsym ‘SYM: HighLarge LowLarge -HighSmall -LowSmall’ -glt_label 5 Large-Small_allED
-gltsym ‘SYM: HighLarge HighSmall -LowLarge -LowSmall’ -glt_label 6 High-Low_allPS
-gltsym ‘SYM: .5HighLarge .5HighSmall .5LowLarge .5LowSmall -OfficeLarge -OfficeSmall’ -glt_label 7 Food-Office
-jobs 8
-fout -tout -x1D X.xmat.1D -xjpeg X.jpg
-x1D_uncensored X.nocensor.xmat.1D
-fitts fitts.$subID
-errts errts.$subID
-bucket stats.$subID
Example stim_times file onsetDir/{subID}_HighLarge*.txt (the space between the onset time and * is always a tab):
4.0 *
108.0 *
126.0 *
108.0 *
30.0 *