AFNI version info (afni -ver
): Precompiled binary linux_ubuntu_16_64: May 8 2023 (Version AFNI_23.1.05 'Publius Helvius Pertinax')
To Paul Taylor – I really enjoyed your presentation on quality in Dallas at the Resting State Connectivity conference. I appreciate all your help!
AFNI,
Without cardiac and respiratory 1D or .dat files (older dataset) how can we improve our alignments and increase our degrees of freedom and overall quality on this resting fMRI dataset? We’re trying to remove (or greatly reduce) nuisance artifacts like motion, heart rate and respiration.
Our bandpass filters are set for
• HR = 60 – 90 bpm = 1 – 1.5 Hz
• BR = 10 – 14 = 0.166 – 0.234
Our dataset matches the specifics of TT_N27.
TR / sampling period =1.875
72 slices / acquisitions / temporal data points
TRs to remove = 7
04_BASELINE+orig = 4 min total resting data
Results: https://aisandra.com/research/6-baseline/index.html
afni_proc.py -subj_id resting-bandpass \
-dsets 04_BASELINE+orig.HEAD \
-blocks despike tshift align tlrc volreg blur mask regress \
-copy_anat 14_SAG_T2_FLAIR_3D+orig \
-tcat_remove_first_trs 7 \
-tlrc_base TT_N27+tlrc \
-tlrc_NL_warp \
-volreg_align_to MIN_OUTLIER \
-volreg_align_e2a \
-volreg_tlrc_warp \
-blur_size 6.0 \
-regress_bandpass 0.01 0.1 \
-regress_bandpass 1.0 1.5 \
-regress_bandpass 0.166 0.234 \
-regress_motion_per_run \
-regress_censor_motion 0.3 \
-regress_censor_outliers 0.1